
Dynamic Registry Updates

Jay Daley
Director of IT
Nominet UK
May 2005

Background

• Complete zone builds took a very long time to do and
propagate. (3.5m DNs, 15m RRs, 300MB biggest
zone file, 2 hr propagation). Increasing the frequency
would have just increased the problem.

• Have seven NSs running BIND9 and service from
UltraDNS for two anycasted servers (UltraDaemon).

• Can receive up to 300,000 updates per day.

• Wanted to reduce the support load by people who
make a mistake and cannot wait until next full build to
have it corrected.

• Consulted with registrars and only one objected -
thought it would reduce the stability of our NSs.

System requirements

• Runs as a separate process from the main registry
system, so that it can be started and stopped
independently.

• Written very defensively. Uses DNS lookups to hidden
primary to double-check it has worked.

• Certain errors ‘can be lived with’ even if they are not
exactly correct, until operator intervention is possible.

• Must be very secure, no spoofing possible.

• Link in our existing monitoring system, which can
detect error failures.

Process overview

• Registration system writes out a table of changes.

• Separate process, running as daemon, examines this
table for new items, packages the updates and sends
them off to hidden primary NS using DDNS.

• This process then checks hidden primary NS by doing
DNS lookups to double check it has worked.

• Hidden primary notifies public primary, which then
picks up the changes using IXFR.

• Public primary then notifies the secondaries and they
pick up changes using IXFR.

• Process sleeps for one minute and then starts again.

System technology

• Written in Perl using Net::DNS. Sends changes by
DDNS. Performance is very good.

• Uses TSIG to secure DDNS updates to the hidden
primary.

• A single DDNS update set can contain 500 updates
(uses TCP).

• DDNS has no concept of modification, so have to
remove then add in the same update set.

• Sets the serial number in the SOA for each update set,
otherwise NS would do it. We are using Unix time
taken when the update packet is sent. (Verisign also
use Unix time).

Changes to registry system

• Registry system now writes out table of changes as
part of the single transaction that updates the registry.

• Need to store data on what to remove as well as what
to add. (for example if NS records change then need
to record which to remove and which to add).

• Negligible impact on performance

• We did not store the correct data to test from the start -
got around this by replaying messages.

• Additional program to force details of DN into this table,
in case manual processing is required.

Testing

• Used four months of data, which was 1.1 million
changes. Takes about 4 hours to process.

• Built a subset of a our live network, with just three NSs,
using identical hardware and software.

• Basic methodology was to apply changes to known
zone file and compare product to second known zone
file.

• Awkward corner cases discovered and then corrected.

• Finally tested failure modes: pulled out cables,
switched off machines, etc.

Pre-implementation tasks

• Some months previously implemented TSIG on all
NSs.

• Serial number rollover one week before as the new
serial number would be lower than the first.

• Set primary to send NOTIFY and prepare secondaries
to respond. (Previously only used scheduled AXFR).

• Warn external DNS provider.

BIND specifics

• Journal file set to 50MB. This holds changes as they come
in. Can grow beyond 50MB quite happily.

• Every 15mins text zone files are updated from journal file. If
journal file exceeds 50MB then it is truncated back to this
size or smaller.Same thing happens on reload or shutdown.

• If changes are so quick that a secondary does not ask for
IXFR before the journal entries are pruned then it could result
in AXFR. However large journal size should prevent this
from being a normal occurrence.

• BIND never goes deaf in this process.

• Network propagation is normally less than one second
across all BIND NSs for most update sets.

Ongoing support

• Scheduled tidy up of database table as update process
does not delete anything, just marks it as processed.

• If a NS is down for repair then it will need to use AXFR
when it comes back as change record likely to have
been overwritten on primary.

• If it all goes pear shaped then we can always switch
back to full builds and AXFR.

• System administrators have to remember to turn
update process off before restarting hidden primary.

Some statistics

• Average time it takes for a change to get from the database
to the nameserver constellation is:

– 35.52 seconds
• As the process sleeps for 1 minute this is actually 5.52

seconds to do the work.

• In 10 weeks the system has processed:

– 294k additions
– 506k changes
– 223k removals

• Average propagation time across NS constellation is:

– below 1s (too quick to bother measuring)

Conclusion

• Very successful. Proper development process with
good testing.

• Technology was actually quite simple.

• Surprised by how fast it propagates.

• Some of our processes are built around daily reloads
(such as removing suspension on late payment) and
these have not changed.

Finish

• Any questions?

• Or email jay@nominet.org.uk

	Dynamic Registry Updates
	Background
	System requirements
	Process overview
	System technology
	Changes to registry system
	Testing
	Pre-implementation tasks
	BIND specifics
	Ongoing support
	Some statistics
	Conclusion
	Finish

