

Active BGP Probing

Lorenzo Colitti

Roma Tre University – RIPE NCC

Agenda

- Our techniques
 - Primitives
 - Applications
 - Results
- Operational impact
 - Why it is safe
 - Why it is low-impact
 - Why it doesn't hamper debugging
- Tests over IPv4?

Our Techniques

The Problem

- Point of view: an ISP
 - We want to know how other ASes treat our prefixes
 - Why?
 - Predict the effect of network faults
 - Perform effective traffic engineering
 - Develop peering strategies
 - Evaluate quality of upstreams
- Existing BGP discovery methods are good at discovering topology but bad at discovering policy
 - We can look at RIS or ORV...
 - ... but we can't find out how the world treats our prefixes

Can we do better?

- We would like to know:
 - Where our announcements go
 - Trivial: just look at RIS or ORV
 - Where our announcements could go: "feasibility"
 - What happens if a link fails and backups come up?
 - What are the margins for traffic engineering?
 - How other ASes treat our prefixes
 - Do other ASes have preferences about how to reach us?
- How can we obtain this information?

Just to get an idea

Standard RIS query

Using our techniques

Feasibility

"Where can our announcements go?"

Lorenzo Colitti

- An AS-path is feasible for a prefix p if "the policies of the ASes in the Internet allow it to be announced"
 - Active ("best") paths, backup paths, alternate paths
- A BGP peering is feasible for p if it's part of a feasible AS-path
 - That is, if it is possible, in some state of the Internet, for the announcements for p to traverse it

Feasibility graph

• Directed graph: nodes = ASes, arcs = feasible

peerings

 Shows us only [a subset of] the portion of the Internet where our announcements can go

Active BGP probing

- Basic idea: inject updates into the network and observe results
 - Use a test prefix p to avoid disrupting production traffic
 - Use RIS or ORV to see (and react to) results in real-time
 - Use looking glasses and route servers to see steady state results
- Two primitives:
 - Withdrawal Observation
 - Let BGP explore alternate paths
 - AS-set Stuffing
 - Force BGP to take alternate paths by "prohibiting" certain ASes

Withdrawal Observation

- BGP explores many alternate paths before realizing a route has been withdrawn
 - An AS sends a withdrawal only if all its alternate paths have been withdrawn
 - Else it sends out an update for one of the alternate paths
- We can use this to discover alternate paths
 - Withdraw the test prefix p
 - Record BGP paths seen during convergence process
 - Merge paths to get a feasibility graph
- BGP does a lot of the work for us

Withdrawal observation: BGPlay

http://www.ris.ripe.net/cgi-bin/bgplay.cgi?prefix=84.205.89.0/24&start=2005-03-01+00:00&end=2005-03-01+00:10

AS-set Stuffing

- Prepend an AS-set containing arbitrary ASes A,
 - The AS-paths seen by the Internet end in $Z\{A_1, A_2, ..., A_n\}$ where Z is our AS number
- We say the ASes A, are "prohibited"
 - They will not receive or process the announcements
 - They disappear from the Internet as far as p is concerned
- What this allows:
 - Topology discovery
 - Path feasibility and policy discovery
 - Measurements in "altered network state"

Topology discovery

- Announcing an AS-set containing ASes in active paths causes alternate paths to appear
 - So we find new ASes and peerings
- Simple algorithm to find out out a larger topology: "Level-by-level" exploration:
- Proceed by increasing topological distance:
 - Prohibit all ASes at certain distance
 - Observe paths seen during convergence and after convergence
 - Add all ASes and peerings found to feasibility graph
 - If new ASes appear at this distance, turn them off too
 - When no new ASes appear, increase distance by one

Example: prohibit level 2

32 ASes 33 peerings 42 ASes 57 peerings

Level-by-level exploration: BGPlay

http://www.ris.ripe.net/cgi-bin/bgplay.cgi?prefix=2001:a30::/32&start=2005-04-19+01:20&end=2005-04-19+02:40

Path Feasibility determination

Suppose the route collector C sees ZFGC

Is the path ZADC feasible?

Announce {B,F,G}

- If C sees ZADC, ZADC is feasible (obviously)
- If C does not see anything, ZADC is not feasible

Path Preference discovery

Suppose ZADC and ZBEC are feasible

Which does C prefer?

• Announce {*F*,*G*}

colitti@dia.uniroma3.it - lorenzo@ripe.net

The path C prefers is the one it chooses as best

"Altered state" measurements

- Use AS-set stuffing to put network into altered state
 - e.g. "turn off" one of our upstreams' upstreams
- Then measure network performance
 - Look at looking glasses in other ASes
 - Or use RTT measurements
 - Forward path stays the same!

Testing and Results

- We tested on the IPv6 backbone:
 - Fewer legacy devices
 - Fewer mission-critical services
 - Much smaller size
- Announcements were for 2001:a30::/32 and originated in AS5397
- For results, see our technical report:

http://www.dia.uniroma3.it/~compunet/bgp-probing/bgp-probing-tr.pdf

Operational Impact

This is safe

- Equipment tests
 - Juniper, old Cisco: reset session at 125 ASes
 - This is not specific to our techniques!
 - New Cisco: ignore path at 75 ASes
 - We never needed more than ~50
- IPv6 tests
 - 11/2004 2/2005 (reprise in April); no problems reported
 - AS-sets noticed only twice (first time after 3 months)
- Observation in the wild (IPv4)
 - Jan 2001: 123-element AS-set; Jan 2002, 124-element
 - Nobody complained of problems due to these events

This is low impact

- Dampening limits us to ~ 1 update per hour
 - A typical Tier-1 router might receive 15k updates per hour
- A 100-element AS-set should require about 200 bytes of memory
 - Core routers are already using tens of megabytes of memory for BGP

This doesn't hamper debugging

- People already prepend other people's AS numbers
- Our techniques are more transparent
 - Our AS is the first AS before the AS-set
 - Apart from the AS-set, the rest of the path is the path the announcement took
 - Such large AS-sets are obviously unlikely to result from route aggregation
- The routes can be tagged with communities
 - Thanks to Tim Griffin for suggesting this
- A whois on the prefix immediately reveals the origin

Ethical Issues

- We're using BGP for stuff it was not designed to do
 - This happens frequently!
 - e.g.: NAT, IP-in-IP tunneling, dupacks for congestion control, ...
- We're using people's AS numbers without their permission
 - People already do it, if not in such an obvious way
 - The announcements should not cause confusion
 - A whois query on the prefix immediately reveals the origin
 - The announcements are immediately recognizable
 - We believe the usefulness of our techniques for ISPs makes it worthwhile

Lorenzo Colitti

Testing in the IPv4 backbone

Testing over IPv4

- We believe these techniques can be useful for ISPs
 - There are no good technical reasons not to do this
- We would like to discover how effective they are in the IPv4 Internet
 - We have tested in the lab
 - We have tested on the IPv6 backbone, with good results
 - See the technical report for details
 - We would like to test on the IPv4 backbone
 - Applying our techniques to the IPv4 Internet might also provide new insights on the structure of the network

Questions?